If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-28x=0
a = 49; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·49·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*49}=\frac{56}{98} =4/7 $
| 7+(4x+5)=60 | | 9a-7=-5a-14 | | 19x+11+13=209 | | -2(3x+8)-6=13 | | 3w+5=1 | | 3=10-b | | -2x+20=5x+1 | | 1/2x+7/8=3/8x | | -188-8x=64+6x | | 0.6x+0.16=1.3 | | x=11.7*9.9 | | 0.03p-0.02(6-3p)=0.05(p-4)-0.12 | | -4(y+6)=-3y-9 | | 17-x=1/3x21 | | 3(x-7)=49 | | 7/4x+2=11/6 | | 8(6+6n)-8=104 | | a+12=18 | | 4/2x-3=3/2x+4 | | 2x60=26 | | 4a+9=13 | | a+29=5 | | 8(6=6n)-8=104 | | 5x/4-1/5=1-2/5(x-1/10) | | -4(2t-5)+5t=2t-7 | | Y=0.3x(24-x) | | -30-7x=-5x+24+77 | | 2/3x+1/6=1/6 | | (X+16)+4=2(x+4) | | −3=(x/3)−6 | | 2x=36.00 | | 69-4(2-3(4a-3))=-17 |